Type YPR-2A Pressure Reducing Valve for Water

This is a direct operating pressure reducing valve for cold and hot water that can be used for small to large flows, with a small pressure fluctuation range. Used for construction facilities, this valve is employed for pressure control of each level's water supplied by an elevated water tank of a medium or high-rise building; as well as for pressure control of feed water from a directly-coupled pump and other boiler feed water.

Screwed type

Flanged type

Features

- Outstanding functions for controlling the pressure of water supplied by a building's elevated water tank to each floor.
- Easy to handle : small size and light weight.
- Two ways to install : horizontally or vertically.
- · A constant pressure level with only a single adjustment.
 - Wide flow range ability : an outstanding level of minimum adjustable flow & adjustable and stable in a wide flow range.
 - All parts can be disassembled through the top of the valve : complete repairs even in limited spaces is possible.
 - Built-in spring-type orifice that prevents a water hammering action.
 - Linear flow pass-through method, which removes noise during operation.

Specifications

Applicable fluid		Water			
Primary pressure		Maximum 10 kgf/cm ² g			
Secondary pressure		Outer spring	0.5~3.5kgf/cm ² g		
re	gulating range	Inner+outer spring	3~7kgf/cm ² g		
Maximum pressure reduction ratio		10:1			
Minimum differential pressure in the inlet and outlet side of the valve		0.5kgf/cm ²			
Minimum adjustable flow		2~5 liters of water/min			
Fluid temperature		Maximum 5~80° C			
End connection		KS PT SCREW(15~25A), KS 10K FF FLANGE(32~150A)			
Materials	Body	GC200			
	Disc, seat	NBR, BC6			
Hydraulic test pressure		15 kgf/cm²g			

Multi-step pressure reduction is needed when the cavitation index is 0.5 or lower.

Strainer (over 40 Mesh) installation is required to ahead inlet when valve installing.

Dimensions (mm)									
Size	L	А	H1	H2	Cv	Weight (kg)			
15(1/2")	100	116	50	184	2.1	3.7			
20(3⁄4")	100	116	50	184	2.1	3.7			
25(1")	120	142	68	224	3.5	6.9			
32(1¼")	190	174	81	327	8.0	17.0			
40(1½")	190	174	81	327	8.0	17.0			
50(2")	190	174	81	327	14	18.6			
65(2½")	250	228	100	374	22	36.3			
80(3")	250	228	100	374	32	37.4			
100(4")	290	250	125	490	48	67.0			
150(6")	390	340	165	655	108	150			

Dimensional drawing

Flanged type (32-150A)

Type YPR-2A Pressure Reducing valve

Chart on selecting a size

How to select the size of a valve by the chart

Example) If the primary pressure is 5 kgf/cm²g, secondary pressure is 2 kgf/cm²g, and flow is 10 cm³/h,

- 1) The differential pressure ($^{a}P=P_{1}-P_{2}$) between the primary pressure (5 kgf/cm²g) and secondary pressure (2 kgf/cm²g) is 3 kgf/cm².
- 2) Determine point "A" by vertically connecting the differential pressure (3 kgf/cm²) with the flow (10 cm³/h).
- 3) Now that "A" is in between a size of 25 and 40, a size of 40 should be selected.

Application Diagram (Example)

